

WEC-Sim Training Course

Online Training Materials

PRESENTED BY

Dominic D. Forbush, Sandia

Code Structure

WEC-Sim Directory Structure

WEC-Sim source code consists of:

File Type	File Name	Directory
WEC-Sim Executable	wecSim.m	\$source
WEC-Sim MATLAB Objects	<object>Class.m</object>	\$source/objects
WEC-Sim Simulink Library	<object>_Lib.slx</object>	\$source/lib/WEC-Sim
Simulink Mask/Model Functions	<functionname>.m</functionname>	\$source/functions/simulink

*These are required inputs, but a number of optional additional inputs are possible, like custom wave spectra/ time-series. See User Manual → Code Structure → spectrumImport

Use of Adv. Features (e.g. PTO-Sim and Moordyn) have additional requirements. **See Advanced Features**

WEC-Sim model files* consist of:

File Type	File Name	Directory
Input File	wecSimInputFile.m	\$ <case></case>
Simulink Model	<simulinkmodelname>.slx</simulinkmodelname>	\$ <case></case>
Hydrodynamic Data	<hydrodataname>.h5</hydrodataname>	\$ <case hydrodatadir=""></case>
Geometry File	<stlfilename>.stl</stlfilename>	\$ <case geomdatadir=""></case>

	geometry
1	hydroData
	elevationData.mat
2	RM3.slx
	spectrumData.mat
	userDefinedFunctions.m
	wecSimInputFile.m

WEC-Sim Source Code

WEC-Sim Source Code

WEC-Sim **source code** consists of:

File Type	File Name	Directory
WEC-Sim Executable	wecSim.m	\$source
WEC-Sim MATLAB Objects	<object>Class.m</object>	\$source/objects
WEC-Sim Simulink Library	<object>_Lib.slx</object>	\$source/lib/WEC-Sim
Simulink Mask/Model Functions	<functionname>.m</functionname>	\$source/functions/simulink

- Source code is included in the MATLAB path
- Can be executed from any directory
- <object>Class.m methods require the <object> to be initialized before use

WEC-Sim Executable

WEC-Sim/source/wecSim.m

File Type	File Name	Directory
WEC-Sim Executable	wecSim.m	\$source
WEC-Sim MATLAB Objects	<object>Class.m</object>	\$source/objects
WEC-Sim Simulink Library	<object>_Lib.slx</object>	\$source/lib/WEC-Sim
Simulink Mask/Model Functions	<functionname>.m</functionname>	\$source/functions/simulink

Running *wecSim.m*

- clears needed variables: this will delete unsaved outputs from previous runs
- Calls *initializeWecSim.m*, which reads *wecSimInputFile.m* and:
 - performs preprocessing calculations in each of the classes
 - selects and initializes variant subsystems in the Simulink model
- runs the time-domain simulation of the Simulink model

View *wecSim.m* and *initializeWecSim.m* from MATLAB Command Window >>edit <filename>

* See Training Materials \rightarrow Theory and Workflow for detailed walkthrough

WEC-Sim/source/objects/

File Type	File Name	Directory
WEC-Sim Executable	wecSim.m	\$source
WEC-Sim MATLAB Objects	<object>Class.m</object>	\$source/objects
WEC-Sim Simulink Library	<object>_Lib.slx</object>	\$source/lib/WEC-Sim
Simulink Mask/Model Functions	<functionname>.m</functionname>	\$source/functions/simulink

Define classes in the wecSimInputFile.m

The following classes create the WEC-Sim objects

 simulationClass.m, waveClass.m, bodyClass.m, constraintClass.m, ptoClass.m, mooringClass.m, cableClass.m

WEC-Sim objects are required to run WEC-Sim simulations

- simu, waves, body(i), pto(i) OR constraint(i)
- Additional object types can be defined if desired

View properties or open classes from MATLAB Command Window >> doc <className> >> open <className>

*See User Manual→Code Structure → Source Detail for more

WEC-Sim/source

WEC-Sim Library Blocks

WEC-Sim/source/lib/

File Type	File Name	Directory
WEC-Sim Executable	wecSim.m	\$source
WEC-Sim MATLAB Objects	<object>Class.m</object>	\$source/objects
WEC-Sim Simulink Library	<object>_Lib.slx</object>	\$source/lib/WEC-Sim
Simulink Mask/Model Functions	<functionname>.m</functionname>	\$source/functions/simulink

WEC-Sim source code includes WEC-Sim library blocks:

• Body Elements, Constraints, Frames, Moorings, PTOs, Cables

Define WEC dynamics in WEC-Sim Simulink model using WEC-Sim Library Blocks

SimulinkModelName>.slx

View properties by double clicking on blocks, Ctrl+U to look under mask

All objects defined in the *wecSimInputFile* should also be blocks used in the Simulink model.

WEC-Sim/source

Simulink Mask/Model Functions

WEC-Sim/source/lib/

disp

enable

Waven

direction

calcDispPhase

File Type	File Name	Directory
WEC-Sim Executable	wecSim.m	\$source
WEC-Sim MATLAB Objects	<object>Class.m</object>	\$source/objects
WEC-Sim Simulink Library	<object>_Lib.slx</object>	\$source/lib/WEC-Sim
Simulink Mask/Model Functions	<functionname>.m</functionname>	<pre>\$source/functions/simulink</pre>

WEC-Sim/source/functions/simulink

Simulink Mask/Model Functions

WEC-Sim/source/lib/

To facilitate version control, within the Simulink model, mask functions and MATLAB functions reference externally-housed functions.

Name of the MATLAB function call is the same as the external function.

Only necessary to change the external function to affect model.

* \$/source/functions/simulink/mask functions are mostly used when running from the Simulink GUI. See Adv. Features \rightarrow Run from Simulink

WEC-Sim Model Files

WEC-Sim Model Files

WEC-Sim model files consist of:

File Type	File Name	Directory
Input File	wecSimInputFile.m	\$ <case></case>
Simulink Model	<simulinkmodelname>.slx</simulinkmodelname>	\$ <case></case>
Hydrodynamic Data	<hydrodataname>.h5</hydrodataname>	\$ <case hydrodatadir=""></case>
Geometry File	<stlfilename>.stl</stlfilename>	\$ <case geomdatadir=""></case>

- Model files are located in the case directory
- ***WEC-Sim models must be executed from the case directory***

WEC-Sim/examples/RM3

An example of a WEC-Sim case directory

WEC-Sim Input File

wooCimInnutEilom

cSimInputFile.	. <i>m</i>			geometry
le Туре	File Name	Directory		📕 hydroData
ıput File	wecSimInputFile.m	\$ <case></case>		elevationData.mat
mulink Model	<simulinkmodelname>.slx</simulinkmodelname>	\$ <case></case>	1	spectrumData.mat
ydrodynamic Data	<hydrodataname>.h5</hydrodataname>	\$ <case hydrodatadir=""></case>		1 userDefinedFunction
eometry File	<stlfilename>.stl</stlfilename>	\$ <case geomdatadir=""></case>	│ └ [魡 wecSimInputFile.m

- Necessary by default (see Adv. Feat. \rightarrow Sim. Feat. \rightarrow Running from Simulink)
- Located in the case directory
- Initialize and define classes in the WEC-Sim input file
 - wecSimInputFile.m
- WEC-Sim objects are required to run WEC-Sim simulations 0

* Additional optional objects are also defined in the wecSimInputFile

Case Directory

See User Manual \rightarrow Code Structure \rightarrow WEC-Sim Classes

WEC-Sim Input File

wecSimInputFile.m

 Initialize Simulation Class Set Properties of Simulation Class 	<pre>simu.explorer = 'on'; simu.startTime = 0; simu.rampTime = 100; simu.endTime = 400; simu.solver = 'ode4'; simu.dt = 0.1;</pre>
 Initialize Wave Class Set Properties of Wave Class 	<pre>%% Wave Information % % noWaveCIC, no waves with radiation CIC waves = waveClass('regularCIC'); waves.period = 6; % seconds waves.height = 1; % meters</pre>
 Initialize Body Class Instances Set Properties of Body Class Instances 	<pre>%% Body Data % Float body(1) = bodyClass('hydroData/rm3.h5'); body(1).geometryFile = 'geometry/float.stl'; body(1).mass = 'equilibrium'; body(1).inertia = [20907301 21306090.66 37085481.11]; % Spar/Plate body(2) = bodyClass('hydroData/rm3.h5'); body(2).geometryFile = 'geometry/plate.stl'; body(2).mass = 'equilibrium'; body(2).inertia = [94419614.57 94407091.24 28542224.82];</pre>
 Initialize Constraint Class Set Properties of Constraint Class Initialize PTO Class Set Properties of PTO Class 	<pre>%% PTO and Constraint Parameters % Floating (3DOF) Joint constraint(1) = constraintClass('Constraint1'); constraint(1).location = [0 0 0]; % Translational PTO pto(1) = ptoClass('PTO1'); pto(1).stiffness = 0;</pre>

* One can also define these parameters directly from the Simulink GUI if desired using the "Running From Simulink" work flow. See Adv. Features → Run from Simulink

pto(1).stiffness = 0; pto(1).damping = 1200000;

%% Simulation Data

simu = simulationClass();

simu.mode = 'normal';

simu.simMechanicsFile = 'RM3.slx';

pto(1).location = [0 0 0];

WEC-Sim Simulink File

<simulinkModelName>.slx

- Located in the case directory
- Define model file using WEC-Sim Library Blocks 0
 - <simulinkModelName>.slx •

%% Simulation Data

simu.mode = 'normal';

simu = simulationClass();

simu.simMechanicsFile = 'RM3.slx';

Alternatively, the parameters can be specified directly in the relevant Simulink blocks using **Advanced Features** → **Running from Simulink**

WEC-Sim/source/objects/

File Type	File Name	Directory
WEC-Sim Executable	wecSim.m	\$source
WEC-Sim MATLAB Objects	<object>Class.m</object>	\$source/objects
WEC-Sim Simulink Library	<object>_Lib.slx</object>	\$source/lib/WEC-Sim
Simulink Mask/Model Functions	<functionname>.m</functionname>	\$source/functions/Simulink

Define classes in the wecSimInputFile.m

The following classes create the WEC-Sim objects

 simulationClass.m, waveClass.m, bodyClass.m, constraintClass.m, ptoClass.m, mooringClass.m, cableClass.m

WEC-Sim objects are required to run WEC-Sim simulations

- simu, waves, body(i), pto(i) OR constraint(i)
- Additional object types can be defined if desired

View properties or open classes from MATLAB Command Window
>> doc <className>
>> open <className>

*See User Manual \rightarrow Code Structure \rightarrow Source Detail for more

WEC-Sim/source

functions	File folder
🗹 📕 lib	File folder
🗹 📕 objects	File folder
paraview_macros	File folder
.gitignore	Text Document
🕵 README.md	MD File
🛛 魡 wecSim.m	MATLAB Code
魡 wecSimStartup.m	MATLAB Code
	bodyClass.m cableClass.m constraintClass.m mooringClass.m ptoClass.m ptoSimClass.m responseClass.m simulationClass.m waveClass.m

WEC-Sim has several different classes

- simulationClass.m
- waveClass.m
- bodyClass.m
- constraintClass.m
- ptoClass.m
- mooringClass.m
- responseClass.m
- cableClass.m

Each class contains:

- Properties that can be defined and/or calculated
- Methods (aka functions) that can be executed

WEC-Sim input file determines which properties are defined and methods are executed

Each class creates a corresponding object that will appear in the workspace

- simulationClass.m → simu
- waveClass.m
- → waves→ body(i)
- bodyClass.m
- constraintClass.m ⇒ constraint(i)
- ptoClass.m
- ⇒ pto(i)
- mooringClass.m

 mooring(i)
- responseClass.m ⇒ output
- cableClass.m
- ⇒ cable(i)

Some properties are used to specify a variant subsystem, e.g.

- *simu.b2b* = 1;
- body(i).nhBody = 1;
- waves = waveClass('regular');

For help, >>doc <name>Class

See also User Manual \rightarrow Code Structure \rightarrow WEC-Sim Classes

WEC-Sim Class Descriptions

Simulation Class

simulationClass.m

The simulation class contains the simulation parameters and solver settings necessary to execute the WEC-Sim code.

Required Properties:

- simMechanicsFile
- startTime, endTime, dt, rampTime, cicEndTime
 - (many have default values)

* See User Manual → Code Structure → Simulation Class

and

API → Simulation Class

>>simu

simu =

simulationClass with properties:

adjMassFactor:	2
b2b:	0
cicDt:	0.1000
cicEndTime:	60
domainSize:	200
dt:	0.1000
dtOut:	0.1000
endTime:	400
explorer:	'on'
gravity:	9.8100
mcrMatFile:	[1×0 char]
mcrExcelFile:	[1×0 char]
mode:	'normal'
morisonDt:	0.1000
nonlinearDt:	0.1000
paraview:	[1×1 struct]
pressure:	0
rampTime:	100
rateTransition:	'on'
reloadH5Data:	0
rho:	1000
saveStructure:	0

- saveText: 0
- saveWorkspace: 1

Wave Class

waveClass.m

The wave class contains all wave information necessary to define the incident wave condition for the WEC-Sim time-domain simulation. In the Simulink model, wave forces are applied inside the body(i) blocks.

 $API \rightarrow Wave Class$

Required Properties:

- type
- Each wave 'type' has different required properties

Wave Type	Required Properties	
noWave	waves.period	
noWaveCIC		
regular	waves.height , waves.period	
regularCIC	waves.height , waves.period	
irregular	<pre>waves.height , waves.period , waves.spectrumType</pre>	
spectrumImport	waves.spectrumFile	
elevationImport	waves.elevationFile	

>>waves

waveClass with properties:

bem:	[1×1	struct]
current:	[1×1	struct]
direction:	0	
elevationFile:	'NOT	DEFINED'
gamma:	[1×0	double]
height:	1	
marker:	[1×1	struct]
period:	6	
phaseSeed:	0	
spectrumFile:	'NOT	DEFINED'
spectrumType:	'NOT	DEFINED'
viz:	[1×1	struct]
waterDepth:	200	
spread:	1	
amplitude:	0.500	00
deepWater:	1	
dOmega:	0	
omega:	1.04	72
phase:	0	
power:	5.74	37e+03
spectrum:	[]	
type:	'regu	larCIC'
typeNum:	11	
waveAmpTime:	[400]	l×2 double]
waveAmpTimeViz:	[]	
wavenumber:	0.111	18

Body Class

bodyClass.m

The body class contains the mass and hydrodynamic properties of each body that comprises the WEC being simulated.

Required Properties:

- mass: value, 'equilibrium'
- inertia
- product of inertia (v5.1.0 release)
- geometryFile (This is used for visualization and some Adv. Feat.)
- h5File (This contains hydrodynamic data from BEM)

*See Training Videos → Body Class Implementation

User Manual→Code Structure → Source Details Body Class

And

API → Body Class

>>body

body =

1×2 **bodyClass** array with properties:

centerBuoyancy centerGravity dof excitationIRF flex gbmDOF geometryFile h5File hydroStiffness inertia initial largeXYDisplacement linearDamping mass meanDrift. morisonElement name nonHydro nonlinearHydro quadDrag paraview viz volume yaw dofEnd dofStart

Constraint and PTO Classes

constraintClass.m

ptoClass.m

Constraint blocks connect WEC bodies to one another (and possibly to the seabed) by constraining DOFs. PTOs do the same and can also apply force along their DOF of action. Unique blocks are available for different DOF restriction (e.g., rotational, translational, spherical)

Constraint and PTO Class required properties:

- name
- location

Additional PTO Class properties that describe applied force. The length of these fields must match the number of unconstrained DOF in the PTO.

- stiffness (non-negative)
- pretension
- damping

* For additional information, see:
 User Manual → Code Structure → Constraint Class
 User Manual → Code Structure → PTO Class
 API → Constraint Class
 API → PTO Class

* For component-level PTO design, see also Adv. Features \rightarrow PTO-Sim

>>constraint

constraint =

constraintClass with properties: hardStops: [1×1 struct] initial: [1×1 struct] location: [0 0 0] name: 'Constraint1' orientation: [1×1 struct] number: 1 >> pto >> pto pto = ptoClass with properties: damping: 1200000 equilibriumPosition: 0 hardStops: [1×1 struct] initial: [1×1 struct] location: [0 0 0] name: 'PTO1' orientation: [1×1 struct] pretension: 0 stiffness: 0 number: 1

Mooring Class

mooringClass.m

Mooring class defines the mooring system as either a linear mooring matrix or a MoorDyn model. It is designed to couple a WEC body, PTO, or Constraint to the sea-bed

Mooring types:

- matrices
- MoorDyn

Properties for matrix:

- name
- location
- Matrix
 - stiffness
 - damping
 - pretension

For additional information, see:

User Manual→ Code Structure→ Mooring Class Advanced Features → Mooring Features→ MoorDyn API→ Mooring Class

>>mooring

mooring =

mooringClass with properties:

initial:	[1,	×1	st	rı	ıct	:]
location:	[0]	0	0	l		
matrix:	[1,	× 1	st	ru	ıct	:]
moorDyn:	0					
moorDynLines:	0					
moorDynNodes:	[1,	< 0	do	buk	ole	e]
name:	'Mo	001	rir	ngl	L '	
orientation:	[0]	0	0	0	0	0]
number:	1					

>>mooring.matrix

ans =

struct with fields:

damping: [6×6 double]
stiffness: [6×6 double]
preTension: [0 0 100 0 0 0]

Cable Class

cableClass.m

Cable class describes a compliant cable that connects two constraints or PTOs. The constraint/PTO defines how the cable connection is allowed to move. If the cable is not in tension, it does not transmit force between the connection points.

Cable required properties:

- stiffness
- damping

By default, cable length and end locations, are determined from the connected constraints/PTOs, assuming zero pretension.

See also: WEC-Sim Applications/Cable Advanced Features →Cable Features User Manual → Code Structure → Cable Class

>>cable

cable =

cableClass with properties:

damping: 100 inertia: [1 1 1] initial: [1×1 struct] cableLength: 17.8000 linearDamping: [0 0 0 0 0 0] mass: 1 name: 'Cable' orientation: [1×1 struct] paraview: 1 preTension: 0 quadDrag: [1×1 struct] stiffness: 1000000 viz: [1×1 struct] base: [1×1 struct] follower: [1×1 struct] location: [999 999 999] volume: [] number: []

Response Class (Output Structure)

responseClass.m

'output' created at the end of a WEC-Sim simulation. It contains all the output time-series and methods to plot and interact with the results.

output = responseClass instance

- Contains all time series from simulation
- Contains all time-series calculations
- Methods for quick plotting

Properties are all defined objects, each with their own sub-fields.

This structure is created before *userDefinedFunctions* runs, so *userDefinedFunctions* can reference **output**.

For additional information, see: User Manual \rightarrow Code Structure \rightarrow Response Class and API \rightarrow Response Class

>>output

output =

responseClass with properties:

bodies: [1×2 struct]
cables: [1×1 struct]
constraints: [1×1 struct]
moorDyn: [1×1 struct]
mooring: [1×1 struct]
ptos: [1×1 struct]
ptosim: [1×1 struct]

wave: [1×1 struct]

>>output.ptos(1)

ans =

struct with fields:

n	ame: '	PTO1 '	
t	ime: [4001×1	double]
posit	ion: [4001×6	double]
veloc	ity: [4001×6	double]
accelerat	ion: [4001×6	double]
forceTo	tal: [4001×6	double]
forceActuat	ion: [4001×6	double]
forceConstra	int: [4001×6	double]
forceInternalMechan	ics: [4001×6	double]
powerInternalMechan	ics: [4001×6	doublel

WEC-Sim Library

WEC-Sim Library Blocks

WEC-Sim/source/lib/

File Type	File Name	Directory
WEC-Sim Executable	wecSim.m	\$source
WEC-Sim MATLAB Objects	<object>Class.m</object>	\$source/objects
WEC-Sim Simulink Library	<object>_Lib.slx</object>	\$source/lib/WEC-Sim
Simulink Mask/Model Functions	<functionname>.m</functionname>	\$source/functions/simulink

WEC-Sim source code includes WEC-Sim library blocks:

Body Elements, Constraints, Frames, Moorings, PTOs, Cables

Define WEC dynamics in WEC-Sim Simulink model using WEC-Sim Library Blocks

SimulinkModelName>.slx

View properties by double clicking on blocks, Ctrl+U to look under mask https://www.mathworks.com/help/simulink/block-masks.html

All objects defined in the *wecSimInputFile* should also be blocks used in the Simulink model.

WEC-Sim/source

WEC-Sim Library

WEC-Sim/source/lib/

WEC-Sim Library

- Drag & Drop library
- "Source Code" blocks

Simulink Model

- Made of WEC-Sim library blocks
- Blocks cannot have the same name: model will automatically number repeated block types.

Library Browser					•
hi mom	~ A -				
Library Search F	Results				
 ▼ WEC-Sim ▼ Body Element □ □	s Rigid Body				^
□ BF Fixed Frames	छिन्छ छिन्छ Floating (3DOF) Floating (6D	াচন OF) Rotational	्ष⊮ म् Spherical	छिन्छ Translational	
 Moorings F	F ■ MooringMatrix				
Rotational P	TO Rotational PTO Rotation Actuation Motion Actuation	Response) EBF FZ EBF nal PTO Spherical n Torque	⊐ ⊑ I PTO Translat	∎F⊇ ional PTO	
Translational Actuation Fo	PTOTranslational PTO rce Actuation Motion				~

WEC-Sim Simulink File

<simulinkModelName>.slx

WEC-Sim Simulink Model

- Created with WEC-Sim Simulink Library Blocks
- Free to incorporate other Simscape/Simulink components

c	~ A.	•				
brary Search	Results					
▼ Body Elemen	ts					^
Core	Com D					
Flox Body	Pigid Body					
 Cables 	Rigid Dody					
▼ Constraints						
BFE	ВРВ	BBFB	BFI	BFI	BBFD	
Fixed	Floating (3DOF)	Floating (6DOF)	Rotational	Spherical	Translational	
Frames						
 Moorings 						
FI	FI					
MoorDyn	MooringMatrix					
▼ PTOs						
BFZ	position velocity acceleration B	F B B			FI	
Rotational I	PTO Rotational PT Actuation Mot	O Rotational P ion Actuation Tor	TO Spherical que	PTO Translati	onal PTO	
Force Respon	FE B	FB				
Translationa Actuation F	PTOTranslational F orce Actuation Mot	PTO ion				

Variant Subsystems

WEC-Sim/source/lib/

Many library blocks contain 'Variant Subsystems'

- Variant subsystems allow multiple implementations to exist within a single model, with one active at a time.
- You can programmatically swap out the active implementation and replace it with one of the other implementations without modifying the model.
- The specification of active subsystems happens within *initializeWecSim.m*.

1) Add <u>Subsystem</u> or <u>Model</u> blocks as valid variant choices. 2) You cannot connect blocks at this level. At simulation, connectivity is automatically determined, based on the active variant and port name matching.

* See Training Materials \rightarrow Theory and Workflow for more information

https://www.mathworks.com/help/simulink/examples/variant-subsystems.html

In conclusion...

³⁹ WEC-Sim Workflow

3). Write WEC-Sim input file

4). Execute wecSim.m

4). Execute wecSim.m

Thank you

For more information please visit the WEC-Sim website:

http://wec-sim.github.io/WEC-Sim

If you have questions on this presentation please reach out to any of the WEC-Sim Developers on GitHub:

https://github.com/WEC-Sim/WEC-Sim

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308.

Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Water Power Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

#