

WEC-Sim Training Course

PRESENTED BY

Jorge Leon, Sandia National Labs

Advanced Features: PTO-Sim

Purpose

• The equation of motion in the time domain for a floating body is:

Usually the PTO is represented as a spring-damper system for simplicity:

$$F_{pto}(t) = -K_{pto}x(t) - c_{pto}\dot{x}(t)$$

Purpose

- PTO-Sim
 - Is a package of detailed PTO models
 - Open-source
 - Integrated with WEC-Sim
- PTO-Sim class includes models such as:
 - hydraulic cylinders
 - hydraulic accumulators
 - hydraulic motors
 - electric generators
 - hydraulic valves

• MATLAB toolboxes contain these models but at additional cost:

- Simscape Hydraulics
- Simscape Electrical

What is PTO-Sim?

Workflow

- Select appropriate PTO (rotational, translational)
- Create a subsystem for your detailed PTO model. The input is the response and the output is either the force or the torque in the PTO.
- The subsystem can be edited depending on the desired level of detail.

6 PTO-Sim Blocks

• PTO-Sim has a library with ten blocks grouped in three different categories:

PTO-Sim Library	Simulink Library Browser –	×
	← Enter search term ✓	
Block	WEC-Sim/PTO-Sim	
Electric Generator	> Vehicle Network Toolbox ^	
Hydraulic cylinder	✓ VISION HDL loolbox ✓ WEC-Sim	
Hydraulic accumulator	Body Elements Electric Hydraulic Motion Conversion Cables	
Rectifying check valve	Constraints	
Hydraulic motor	Moorings	
Linear crank	Electric	
Adjustable rod	Hydraulic Motion Conversion	
Check valve	PTOs > Wireless HDL Toolbox	
Direct drive linear generator	Recently Used 🗸	
Direct drive rotary generator		

7 PTO-Sim Blocks

RM3 with hydraulic PTO

Two body point absorber

Float Hydraulic Transmission **High Pressure** Accumulator Rotary Generator Hydraulic Rectifying Piston Motor Valves Ų Speed Torque Low Pressure Accumulator Hydraulic PTO

9 Examples

Examples

Hydraulic Cylinder

%Hydraulic Cylinder

ptoSim(1) = ptoSimClass('hydraulicCyl'); ptoSim(1).hydPistonCompressible.xi_piston = 3; ptoSim(1).hydPistonCompressible.Ap_A = 0.0378; ptoSim(1).hydPistonCompressible.Ap_B = 0.0378; ptoSim(1).hydPistonCompressible.bulkModulus = 1.86e9; ptoSim(1).hydPistonCompressible.pistonStroke = 6; ptoSim(1).hydPistonCompressible.pAi = 2.1333e7; ptoSim(1).hydPistonCompressible.pBi = 2.1333e7;

Hydraulic Motor

%Hydraulic Motor

ptoSim(5) = ptoSimClass('hydraulicMotor'); ptoSim(5).hydraulicMotor.effModel = 2; ptoSim(5).hydraulicMotor.displacement = 120; ptoSim(5).hydraulicMotor.effTableShaftSpeed = linspace(0,2500,20); ptoSim(5).hydraulicMotor.effTableDeltaP = linspace(0,200*1e5,20); ptoSim(5).hydraulicMotor.effTableVolEff = ones(20,20)*0.9; ptoSim(5).hydraulicMotor.effTableMechEff = ones(20,20)*0.85;

12 Examples

Electric generator and shaft speed control

- R_{Load} represents the load in the generator
- In this example, *R*_{Load} is used to control the shaft speed.

OSWEC Hydraulic cylinder connected to an adjustable rod

OSWEC Hydraulic cylinder rod connected to a slider-crank mechanism

Thank you!

All previous webinar materials and recordings are available online:

http://wec-sim.github.io/WEC-Sim/webinars.html

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308.

Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Water Power Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

#