

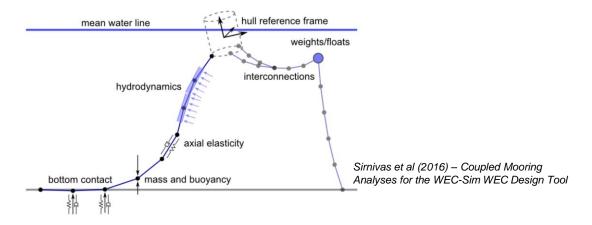
WEC-Sim Training Course

Using MoorDyn with WEC-Sim

September 2023

PRESENTED BY

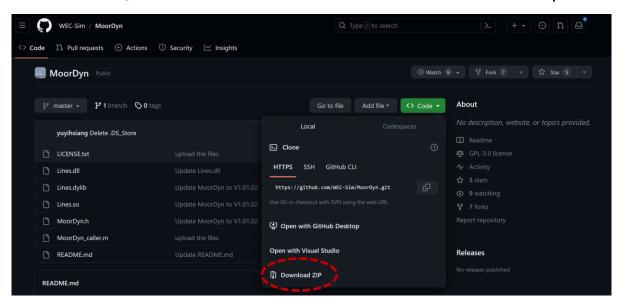
David Ogden


Using MoorDyn with WEC-Sim

Contents:

- 1. What is MoorDyn?
- Download the necessary MoorDyn files
- 3. Run the WEC-Sim RM3 example with MoorDyn
- 4. Check the results
- 5. Modify the MoorDyn input file

What is MoorDyn?

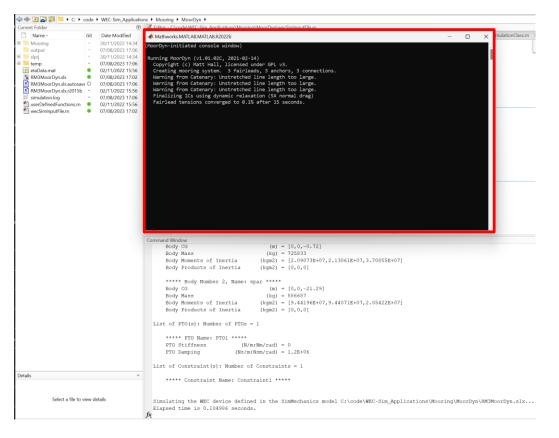

 MoorDyn is a lumped-mass mooring line model for simulating the dynamics of moorings connected to floating offshore structures.

 Dynamic mooring models are critical in order to obtain a more accurate estimate of a WEC's response and the mooring line loads.

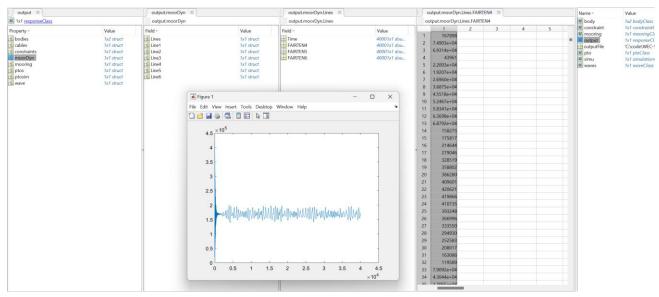
Download the necessary MoorDyn files

Navigate to https://github.com/WEC-Sim/MoorDyn and download the repo:

Save the repo to the directory: WEC-Sim/source/functions/moorDyn


WEC-Sim RM3 MoorDyn Example

Now head to the MoorDyn example: WEC-Sim_Applications/Mooring/MoorDyn


Running the WEC-Sim RM3 MoorDyn Example

When you run the example, you should see a MoorDyn-initiated console window pop up:

Check results of the WEC-Sim RM3 MoorDyn Example

 The MoorDyn data should automatically appear in the workspace, within the 'output' object:

 Modify this part of the MoorDyn input file in order to change which data is saved:

Developing your own MoorDyn models

For a comprehensive explanation of the different sections of the MoorDyn input file, please see the MoorDyn documentation:

:https://moordvn.readthedocs.io

LineType	Diam	MassDer	InAir	EA	BA/-zeta	Can	Cat				
	(=)	(kg/n		(N)	(Pa-s/-)						
chain	0.144	126.0		3.376E6	-0.8	1.0	0.0	1.6	0.05		
		NC	DE PROPER	TIES							
Node	Type										
		(m)	(m)	(m)	(kg)	(m^3)	(kN)	(kN)	(kN)	(m ²)	
	Vessel	-3.0		-10.00							
		-267.0		-70.00							
	Vessel		2.598	-10.00							
		133.5	231.23	-70.00							
	Vessel		-2.598	-10.00							
		133.5	-231.23	-70.00							
	Connect	-48.8		-10.00	16755	33.510				12.566	
	Connect	20.0	34.642	-10.00	16755	33.510				12,566	
	Connect	28.8	-34.642	-10.00	16755	33.510				12,566	
2 3 4		240.0	15 15 5		8 9 1	tp tp tp					
5	chain	40.0	5		3	tp					
	chezn	40.0	S LUCE OPTE	ONS							
0.0005	dtM			to use in							
0.0003	WaveKin			atics flag				current	ly suppo	rted)	
3.0e6	kBot		ottom sti								
3.0e5	cBot		ottom dam								
70	WtrDpth - water depth										
5.0	CdScaleIC	c - f	actor by	which to s	cale drag	coefficien	ts durin	g dynami	c relaxa	tion IC	ger
0.001	threshIC			for IC con							
	WriteUnit		ption to	skip units	line in o	utput file	s if zer				
			ALCOHOLDES.								
			- 001P015								

In your WEC-Sim input file, ensure that the number of lines and nodes (segments+1) matches the MoorDyn lines.txt input file:

Thank you

Sandia National Laboratories

For more information please visit the WEC-Sim website:

http://wec-sim.github.io/WEC-Sim

If you have questions on this presentation please reach out to any of the WEC-Sim Developers on GitHub:

https://github.com/WEC-Sim/WEC-Sim

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308.

Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Water Power Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

